RACE for 203

B5: Anaerobic digestion for electricity, transport and gas opportunity assessment

Barriers & Policy Workshop, 17th March, 2022

Jarrod Leak

Chief Executive Officer jarrod.leak@a2ep.org.au

We would like to acknowledge the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their Elders past, present and emerging.

Housekeeping

- The slides will be distributed shortly after this meeting
- This meeting is being recorded. If you do not wish to be recorded, you are welcome to leave your camera turned off.
- Your participation is entirely voluntary, and we will seek your consent to participate at the start this meeting. You are free to withdraw from participating at any time prior to report publication without providing a reason. With your consent, we will list participant organisations in reports, without attributing specific statements to members. Please see the link in the **Chat** for the Consent Form in Google Forms.

Agenda

ltem	Time	Lead	RACE for
Open & Welcome	2:30 – 2:40pm	Jarrod Leak – A2EP	RELIABLE AFFORDABLE CLEAN
Study overview	2:40 – 2:50pm	Prasad Kaparaju– Griffith Uni	ENERGY
Barriers workshop	2:50 – 3:20pm	Andrea Trianni – UTS	
Regulatory workshop	3:20 – 3:50pm	Rowena Cantley-Smith – UTS	
Closing	3:50 – 4:00pm	Jarrod Leak – A2EP	

Associate Professor Prasad Kaparaju, Griffith University (Project Leader)

A leading international researcher in anaerobic digestion, environmental biotechnology and bioprocess engineering. A/Prof. Kaparaju is an active member of Bioenergy Australia and Member of Taskforce on Waste Management, Circular Economy and Biogas in Australia.

Dr Rowena Cantley-Smith, University of Technology, Sydney (Project Manager)

A Senior Lecturer in the Faculty of Law and practicing lawyer with more than 20 years' experience in the Australian and European energy sectors and expertise encompassing energy policy, law, and regulation, climate change law, legal rights and consumer protections.

Professor Long Nghiem, University of Technology, Sydney

Prof. Nghiem is an international leader in energy and resource recovery from waste and wastewater. His research to recover energy and nutrients from wastewater and organic waste has been impactful to bioenergy management and industry practice in Australia and overseas.

Associate Professor Andrea Trianni, University of Technology, Sydney

A mechanical and industrial engineer internationally recognised as leader in industrial energy efficiency, A/Prof. Andrea Trianni has more than 100 publications with particular emphasis on the barriers to and drivers for the adoption of more sustainable solutions by industry.

Jarrod Leak, CEO, Australian Alliance for Energy Productivity (A2EP)

Before A2EP, Jarrod was Managing Director and Cluster President for Swedish engineering company, Alfa Laval's Oceania and south east Asian operations. He has extensive experience with municipal wastewater treatment, agriculture and food processing, and cogeneration systems.

Dr Rebecca Cunningham, UTS-ISF, Sydney

Dr Rebecca Cunningham is a social scientist with research interest and expertise in climate change adaptation, data analytics and visualisation, natural resource governance, the science/policy/community nexus, science communication including the use social network analysis

A/Prof Brent Jacobs, UTS-ISF, Sydney

A/Prof Brent Jacobs is a Research Director in the UTS-Institute for Sustainable Futures working in climate change adaptation, landscapes and ecosystems, and food systems. He has a background in agricultural science and a decade of experience in the natural resource sector in NSW Govt.

Stakeholders

Study overview by Assoc. Prof. Prasad Kaparaju

Overview

Assoc. Prof. Prasad Kaparaju

Poll and Discussion

- Barriers and Opportunities by Andrea

What are the most relevant **economic** barriers to AD deployment? Please rate the following 1/10 (*1=not* relevant, 10 = most relevant):

- Costs/capital requirements
- Competition with other fuels
- Lack of R&D funding
- High costs of production, cleaning and upgrading
- Lack of subsidies and support
- Uncertainty with creating value from AD

Join at slido.com #770362

(i) Start presenting to display the joining instructions on this slide.

What are the most relevant economic barriers to AD deployment? Pick the three most relevant

Are there any other major economic barriers not listed yet? Please drop a quick note.

What are the most relevant **technological** barriers to AD deployment? Please rate the following 1/10 (*1=not* relevant, 10 = most relevant):

- Infrastructural
- Feedstock supply and transport
- Being reluctant in signing long-term agreements
- Long distances between biogas unit and targeted feedstocks
- Lack of industrial experience on biogas
- Lack of reliable information and guidelines
- Lack of industry partners to co-develop biogas projects

What are the most relevant technological barriers to AD deployment? Pick the three most relevant

Are there any other major technological barriers not listed yet? Please drop a quick note

What are the most relevant **social** barriers to AD deployment? Please rate the following 1/10 (*1=not* relevant, 10 = most relevant):

- Complex 'ecosystem' of partners
- Trust need for collaborative partnerships
- Lack of stakeholder engagement place-based issues
- Limited public understanding of biogas production

What are the most relevant social barriers to AD deployment? Pick the two most relevant.

Are there any other major social barriers not listed yet? Please drop a quick note

What are the most relevant **environment** barriers to AD deployment? Please rate the following 1/10 (*1=not* relevant, 10 = most relevant):

- Characteristics of biogas
- Characteristics of feedstock
- Quality of feedstock supplied (need for additional processes/treatment)

What are the most relevant environment barriers to AD deployment? Pick the one that is most relevant.

Are there any other major environment barriers not listed yet? Please drop a quick note

Discussion

- Regulation and policy with Rowena

CRC-RACE 2030 B5 Opportunity Assessment 17 March 2022

REWENABLE NATURAL GAS: REGULATORY BARRIERS & OPPORTUNITIES

Dr Rowena Cantley-Smith

UTS Law Faculty

This Photo by Unknown Author is licensed under CC BY-NC-ND

Overview

- 1. International Perspectives
- 2. Barriers
- 3. Recent Developments
- 4. Opportunities
- 5. Where to from here?

RS Ш **SARR**

17/03/2022

@DrRCantley-Smith

17/03/2022

@DrRCantley-Smith

RECENT DEVELOPMENTS

RECENT DEVELOPMENTS

We would appreciate your feedback on the following questions (answers can be put in the next SLIDO)

DISCUSSION QUESTIONS

What do you see is the key role of a regulatory framework for biogas and biomethane?

How can carbon mitigation benefits be better recognised and rewarded?

What policy drivers could be introduced to support AD/Biogas and Biomethane?

What renewable gases should be recognised in the existing National Gas Market laws?

Should the existing market institutions (AEMC, AER, AEMO) have primary responsibility in respect of biomethane?

A question for further discussion: What "laws" could be introduced to support AD/biogas and Biomethane?

@DrRCantley-Smith

What do you see is the key role of a regulatory framework for biogas and biomethane?

How can carbon mitigation benefits be better recognised and rewarded?

What policy drivers could be introduced to support AD/Biogas and Biomethane?

What renewable gases should be recognised in the existing National Gas Market laws?

Should the existing market institutions (AEMC, AER, AEMO) have primary responsibility in respect of biomethane?

A question for further discussion: What "laws" could be introduced to support AD/biogas and Biomethane?

Next steps / key dates

Next steps

- Future opportunities/brainstorming over the future research roadmap by Andrea
- Market potential paper by Prasad

Closing

Supporting slides

Current status

- Total energy consumption 6,013 PJ in 2019-20
 - 16.7 PJ biogas
- 242 AD facilities
- Biogas uses heat and electricity generation in CHP
 - More than 50% landfills flare the
- No commercial biogas upgrading plants
- With the future energy policies
 - Share of biomethane could grow to up to 33% by 2050

Biogas source and uses in Australia

Sustainable feedstock availability

- Agril biomass is the major feedstock.
- Pork production across QLD, VIC, SA, NSW and WA
- Dairy and beef VIC and QLD, respectively
- Sheep production southern states of NSW, SA and VIC and in the southern parts of WA
- Forcing for mono-digestion
- Opportunity for codigestion

Livestock and Sewage sludge biomass concentration in

Potential biogas production

- Data from the Australian Biomass for Bioenergy Assessment (ABBA) database (ARENA, 2020), available via the AREMI National Map platform
- Total biomass availability: 62 million tonnes TS
- Agril Crop Residues Major (69.5%)
- Biomass collection rates Low, Medium and High

	Gross		Biogas use in CHP		Biogas upgrading	
Feedstock	Methane prod.	energy	Electricity	Heat	BioCH	BioCO ₂
	(M Nm ³ /tFM/yr)	potential	Production	production	(C hr)	
	35 000 000	(GWh/yr)	(GWh _e /yr)	(GWh _t /yr)	(GJ/yr)	(Million t/yr)
Agricultural crop residues	2,503.72	24,912	10,563	10,613	8,742,286	4,745
Livestock manure	98.92	984	417	419	345,391	151
Agro-industry wastes	375.86	3,740	1,586	1,593	1,312,381	726
Food processing wastes	44.69	445	189	189	156,053	58
Biowaste	154.47	1,537	652	655	539,380	214
Sewage sludge	3.43	34	14	15	11,975	6
Total	3,181.09	31,652	13,420	13,484	11,107,467	5,899

Existing AD Technologies

- AD technologies:
 - Wet process (<10% TS) and Dry (>25%)
 - Batch vs continuous
- Reactor Technology
- CSTR
 - Farm-scale and centralised biogas plants in Europe
 - Manures, energy crops, food waste
- Covered anaerobic lagoon (CAL)
 - High strength abattoir and agricultural wastewater
 - Low initial cost, negligible operating costs and simplicity of operation

ReWaste Biogas plant Yarra Valley

Southern Meats CAL, Goulburn, NSW

Case studies

Project name	Funding	Feedstock	Fate of digestate	Government	Power purchase	Reference
				incentives eligibility	agreement (PPA)	
Jankadot	• \$A 8 - 10 million capital	Commercial and	Blended with	NIL	NIL	ENEA (2019)
Bioenergy plant	cost out of which:	industrial biowaste	existing products			
	\$A 2.2 million loan from	from various	to improve			
	CEFC	sources	agricultural values;			
	• \$A 1.6 million grant from		sold as			
	Clean Technology Investment program and Western Australia State Government		bio-fertiliser			
Rewaste plant at	\$A 27 million capital cost with no financial	Commercial and	Can be sold for	Emission	NIL	ENEA (2019)
Yarra Valley	support	industrial biowaste	agricultural use	Reduction		
Water		from various		Fund		
		sources				
Goulburn	\$A 6.39 million capital cost	On-site feedstock	NIL	Australian	20 years PPA	ARENA (2020)
Bioenergy Project	out of which:	supply, industrial		Carbon	with	
	• \$A 2.1 million funded by	wastewater from		Credit Units	Southern Meats	
	ARENA	proximal abattoir		(ACCUs)	abattoir	

Biogas plant concepts

Kalmari Farm, Finland

Denmark centralised biogas plant

