
# The Accelerating Energy Transition

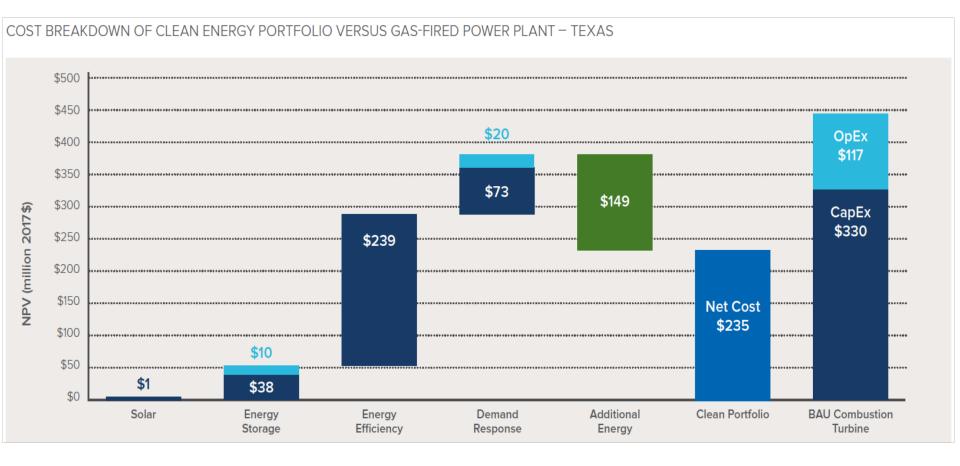
### Ned Harvey April 8, 2019 Australian Alliance for Energy Productivity Innovation X-Change



Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

### An energy revolution is afoot, towards a low carbon future



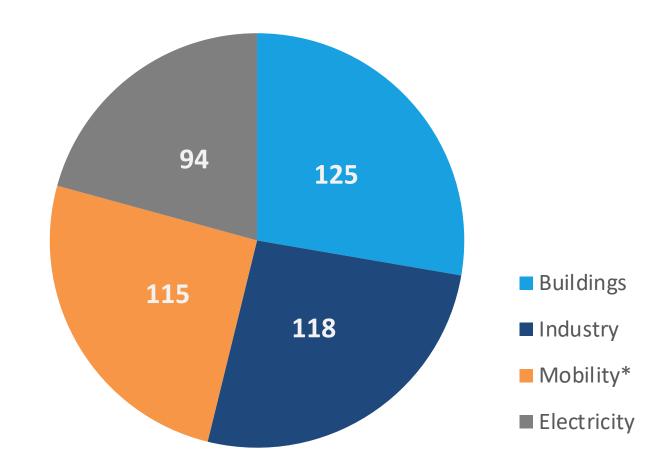



# With technology combinations providing most or all network stability services

|                               |                                  | Synchronous               |                         |              |                           |       |                          | Inverter-Based |                   |                   |                        |                        | Demand Response |                       |
|-------------------------------|----------------------------------|---------------------------|-------------------------|--------------|---------------------------|-------|--------------------------|----------------|-------------------|-------------------|------------------------|------------------------|-----------------|-----------------------|
|                               |                                  | Coal                      | Gas–<br>Simple<br>Cycle | Gas–<br>CCGT | Nuclear                   | Hydro | Synchronous<br>Condenser | Wind           | Centralized<br>PV | Distributed<br>PV | Centralized<br>Storage | Distributed<br>Storage | Industrial      | Small /<br>Aggregated |
| Volt/Var                      |                                  |                           |                         |              |                           |       |                          |                |                   |                   |                        |                        | $\bigcirc$      | $\bigcirc$            |
| Short Circuit<br>Contribution |                                  |                           |                         |              |                           |       | $\bullet$                | $\bigcirc$     | $\bigcirc$        | $\bigcirc$        | $\bigcirc$             | $\bigcirc$             | $\bigcirc$      | $\bigcirc$            |
| Frequency Support             | Inertial<br>Response             |                           |                         |              |                           |       |                          | •              |                   | $\bigcirc$        |                        |                        | $\bigcirc$      | $\bigcirc$            |
|                               | Primary<br>Frequency<br>Response |                           |                         |              | $\bigcirc$                |       | $\bigcirc$               | •              | •                 |                   |                        |                        | C               |                       |
|                               | Regulation                       |                           |                         |              | $\bigcirc$                |       | $\bigcirc$               |                |                   |                   |                        |                        |                 |                       |
|                               | Load<br>Following                |                           |                         |              | $\bigcirc$                |       | $\bigcirc$               | 0              | C                 | C                 | •                      | •                      | O               | C                     |
|                               | Spinning<br>Reserve              |                           |                         |              | $\bigcirc$                |       | $\bigcirc$               | 0              | C                 | $\bigcirc$        |                        |                        |                 |                       |
| Short-term<br>availability    |                                  |                           | •                       |              |                           |       |                          |                | C                 | C                 |                        |                        |                 | $\bigcirc$            |
| Long-term<br>availability     |                                  |                           | •                       |              |                           |       | •                        | •              | •                 |                   |                        |                        |                 |                       |
| Black Start                   |                                  | $\bigcirc$                |                         |              | $\bigcirc$                |       | $\bigcirc$               | $\bigcirc$     | $\bigcirc$        | $\bigcirc$        |                        | $\bigcirc$             | $\bigcirc$      | $\bigcirc$            |
| No service provision          |                                  | Partial service provision |                         | Full         | Full service<br>provision |       |                          |                |                   |                   |                        |                        |                 |                       |



# Soon, clean energy portfolios will even put gas at risk

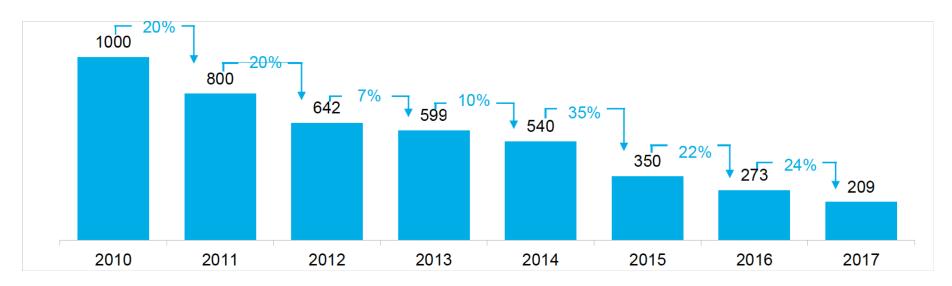



Source: RMI, 2018. The Economics of Clean Energy Portfolios.



# But energy transition is more than renewables

**Total global final energy consumption by end-use sector, 2016** Exajoules




\*Includes both passenger and freight transport. Electricity does not include that used in other end-use sectors.



# 20% learning rate in Li-ion storage is a game changer

#### Lithium-ion battery pack prices \$/kWh



Source: BNEF 2018



# Li-ion gains are shifting the game in (electric) mobility

### **Electric vehicles**



NEWS

Volvo Cars Aiming For 50% Of Sales To Be EVs By 2025

Daimler Is Buying a Massive \$23 Billion Worth of Battery Cells to Power Its Future EV Lineup

Volkswagen to spend \$50 billion by 2023 on electric car 'offensive'

100 electric buses by Yutong delivered to Santiago de Chile

GM Restructuring Reveals a 'Disconnect' Between SUV Sales Today and an EV Future

San Francisco Commits To All-Electric Bus Fleet By 2035



### In this way, smart buildings are becoming an energy asset











# IT solutions will be key to tie together clean resources to improve grid functions with high penetration renewables

### **FIVE EXAMPLES**

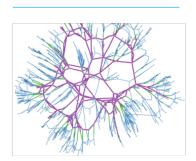
DEMAND RESPONSE 2.0, WHICH ENABLES DEMAND TO SEAMLESSLY FOLLOW SUPPLY

ENERNOC

AUTOMATING NETWORK STABILITY, ENABLING MORE ASSETS TO BE INTEGRATED INTO A MORE FLEXIBLE LOWER CARBON ELECTRICITY SYSTEM

REAL TIME GRID DATA AS A CRITICAL INGREDIENT TO MANAGE THE GRID, INCLUDING ON CARBON INTENSITY

**WattTime**\*


MOBILITY TRANSFORM-ATION ENABLED BY AUTONOMOUS ELECTRIC VEHICLES



BLOCKCHAIN AS THE KEY ENABLING TECHNOLOGY FOR THE TRANSACTIVE GRID...OR AS MASSIVE DISRUPTOR OF THE CURRENT POWER SYSTEM

energy <u>web</u>





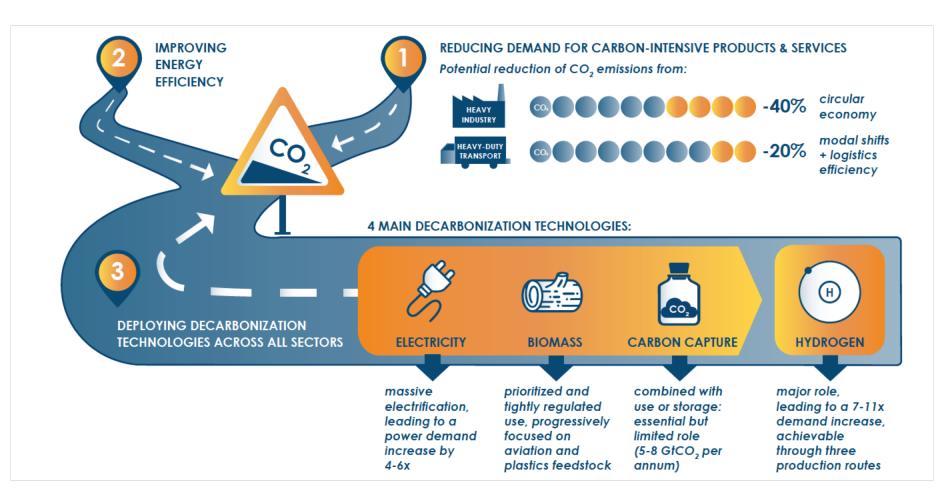
### The ETC has focused our lens industry & transport solutions





## These parts of the economy are harder to decarbonize

THE BIGGEST CHALLENGE IN MEETING THE PARIS AGREEMENT LIES IN THE MAJOR HARDER-TO-ABATE SECTORS




REACHING NET-ZERO CO, EMISSIONS FROM HARDER-TO-ABATE SECTORS BY MID-CENTURY IS POSSIBLE





### Three central pathways to decarbonization of industry





# How a "circular economy" drives emissions reductions



### High-value recycling and less new material

#### High-value recycling

- Increased collection rates
- Design for disassembly and improved materials separation
- Less contamination and downgrading of materials

Less material input for each car, building etc.

#### Improved production

- Less production waste
- Avoid over-specification

#### **Reuse of components**

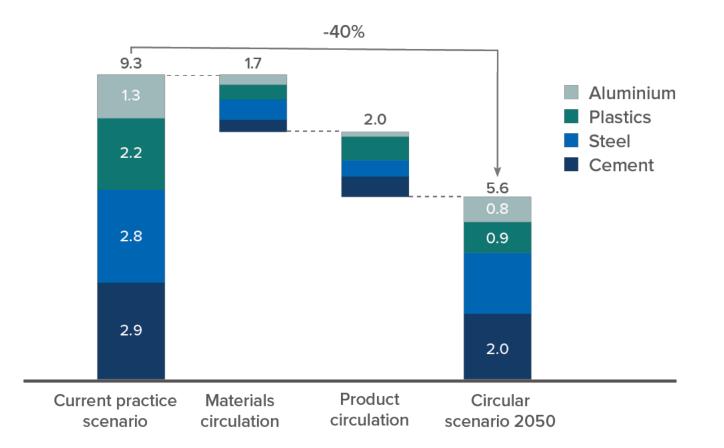
#### Improved design

- High-strength materials
- New design principles
- Variation in size

### Fewer products to achieve the same benefit

#### **Higher utilisation**

- Sharing of products
- Product as service


#### Longer lifetime

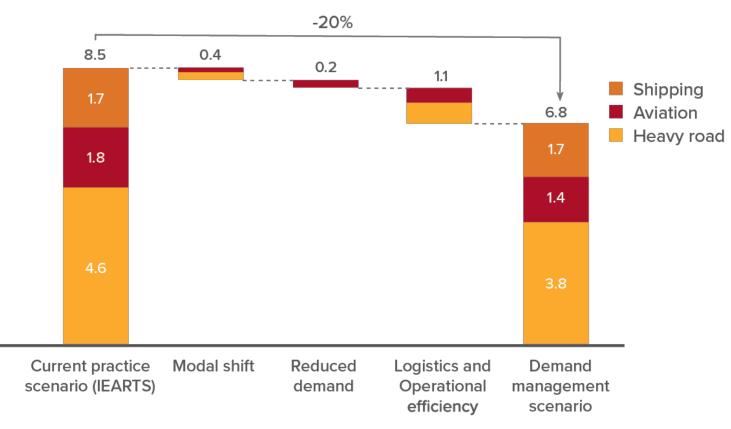
- Design for durability and disassembly
- Long lasting materials
- Improved maintenance
- Remanufacturing



## A more circular economy can cut emissions by 40%

**Global emissions reductions potential from a more circular economy** Gt CO<sub>2</sub> per year



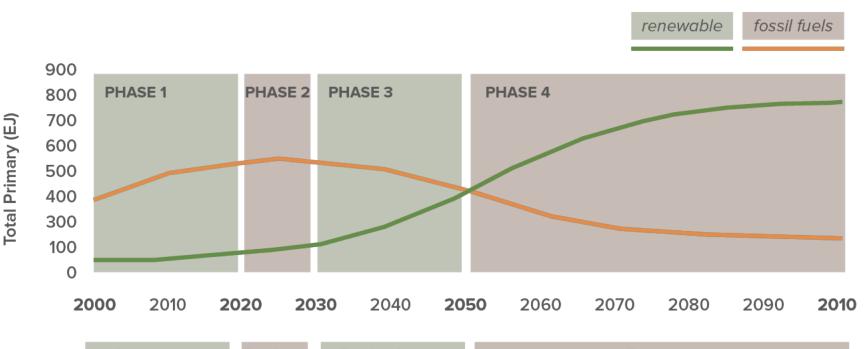

Source: Material Economics analysis for the energy Transitions Commission (2018)



# Demand management can cut heavy transport emissions by 20% by 2050

Global emissions reductions potential from demand management

Gt CO<sub>2</sub> per year, 2050

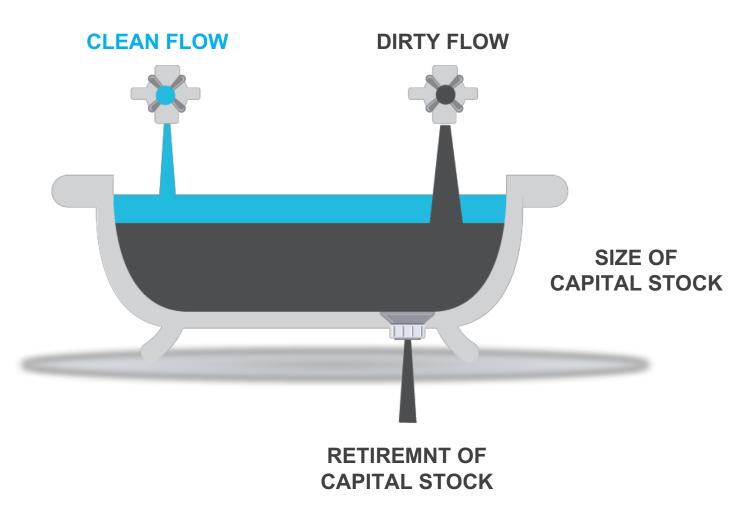



Source: SYSTEMIQ analysis for the Energy Transitions Commission (2018)



# The transition may appear slow moving, but is speeding up

#### Phases of the energy transition




| Innovation                                                                                   | Peaking                                                 | Rapid change                                                     | Endgame                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renewables are<br>growing but not<br>yet big enough to<br>supply all energy<br>demand growth | Fossil fuel<br>demand<br>peaks and<br>starts to<br>fall | Golden period of<br>demand growth<br>for the renewable<br>sector | <b>Renewables</b> finally overtake fossil fuels to provide<br>more than <b>50% of energy.</b> Some of the more<br>difficult sectors of fossil fuel demand will need to be<br>addressed. |

Source: Shell Sky scenario, CTI



# Bur for climate change, capital stock is the major challenge



